New Scientist Live

This weekend the ExCeL centre in London hosted an event called New Scientist Live, which was aimed at the general public and invited speakers across various fields, including Brain & Body, Technology, Earth and Cosmos. Additionally, there were stands and interactive stations run by various scientific institutions from across the UK and Europe, including The Francis Crick Institute, the Royal Society of Biology and the European Space Agency, to name a few.

But, to be honest, I was already sold when I saw the giant bacterium (precise species is still a matter of debate; could be E. coli) hanging from the ceiling:

img_1154

Apart from this excellent demonstration of how cool cells are I want to write about two highlights.

  1. The talk by Molly Crockett on “What makes us moral?”
    Molly Crockett has a lab at the Department of Experimental Psychology, University of Oxford (but will be moving to Yale next year) where she and her research group study the neuroscience of “morality”. Dr Crockett’s talk was all-round excellent: from the clarity of her speaking, to the information on the slides, the science simplified enough to be understandable, yet retaining the references on the slides so that one can look up the original research (Crockett et al., 2014 and 2015, both open access!). The main finding of the 2014 paper was that people tend to be “hyperaltruistic”: when deciding whether to inflict painful electric shocks to oneself or another anonymous human being, the person deciding needed to be offered/paid more money to hurt another person. People also decided more slowly when the effects were to be felt by the other person rather than oneself. Importantly, and Dr Crockett emphasised this in her talk, these studies were conducted with real people and real electric shocks so that the results from their experiments might give us information about real life situations, as opposed to hypothetical ethical dilemmas. Possibly one of the most famous of these dilemmas is one in which a person needs to decide whether to save five people by actively sacrificing one, or to passively let five people die:moral-dilemmaIn the 2015 paper the authors then go on to test whether various drugs  – the antidepressant Citalopram, a selective serotonin re-uptake inhibitor and Levodopa, a dopamine precursor – can alter this moral decision making. Interestingly, the antidepressant reduced the overall number of electric shocks the deciders were giving out, both to themselves and to others. The hyperaltruism was preserved since deciders still gave fewer shocks to the receivers for the same amount of money. Levodopa, on the other hand abolished this hyperaltruistic effect:

    crockett-2015

    Bar charts showing the effects of citalopram and levodopa on harm aversion – copied directly from Crockett et al., 2015

    Obviously the talk and the papers go into much more detail, especially with the statistics used to evaluate these admittedly small effects. Lastly, it’s important to note that, as Dr Crockett pointed out, none of this means that researchers are working on, or should be working on, developing a “morality drug”…

  2. The science magazine Nautilus published by the MIT Press.
    Nautilus starts where the New Scientist stops, namely, where things get really interesting. To me, the New Scientist poses similar questions to the ones I might ask, but often fails to really answer them or provide a satisfactory explanation as to why there is no answer (yet). When I do read its articles they often leave me with more questions than before, which, of course, isn’t a bad thing. However, after reading a few articles of Nautilus it seems that this magazine is more thought-provoking: the articles are longer and maybe more on the creative side, but retain the references at the end, and the style of writing is more enjoyable to me. For instance, an article called “The Wisdom of the Aging Brain” by Anil Ananthaswamy discusses the possibility that there are neural circuits, or certain regions of the brain, that, with training and age, allow us to become wiser.
    So if any of my few readers is feeling particularly generous today then why not consider getting me the Sep/Oct edition…?

References:

Crockett MJ, Kurth-Nelson Z, Siegel JZ, Dayan P, Dolan RJ (2014) Harm to others outweighs harm to self in moral decision making. Proceedings of the National Academy of Sciences 111: 17320-17325

Crockett Molly J, Siegel Jenifer Z, Kurth-Nelson Z, Ousdal Olga T, Story G, Frieband C, Grosse-Rueskamp Johanna M, Dayan P, Dolan Raymond J (2015) Dissociable Effects of Serotonin and Dopamine on the Valuation of Harm in Moral Decision Making. Current Biology 25: 1852-1859

CRISPR Digest #12

I know what you’re all thinking. When is she finally going to post about CRISPR again? It’s been too long. Well, you’re absolutely right and I’m going to make up for it. Last week I glimpsed a short article on the Science News site discussing the first CRISPR-modified cabbage. The botanist Stefan Jansson at Umeå University in Sweden “cultivated, grew, and ate a plant that had its genome edited with CRISPR-Cas9”. This is obviously very fitting since one of the pioneers of the technology, Emmanuelle Charpentier, carried out some of the seminal work at the same university between 2009 and 2014.

To cheer you up at the end of the summer, here have a listen to a short radio report on the CRISPR cabbage served with garlic and pasta – it’s in Swedish but that makes it all the more charming.

http://sverigesradio.se/sida/embed?type=publication&id=6508845

On a slightly more serious note though, I wrote about CRISPR gene-editing in the context of HIV infection in a previous post, and want to follow up here. In the last paper I discussed (Kaminski et al, 2016), the authors showed, as a proof-of-principle, that it is possible to use the Cas9 protein to cut out the HIV genome from infected T cells’ genomes, at least in a model of HIV infection. However, following this promising result two papers published more recently (both Wang et al, 2016 – sadly not me) show that the same process actually generates HIV mutants that can become infectious again. In particular, when the Cas9 protein cuts the HIV DNA that is integrated in the human genome, the human cells try to repair the cut in a process called non-homologous end joining (NHEJ). This correction mechanism, however, is prone to making errors and can sometimes lead to the creation of HIV DNA sequences that can replicate again. These HIV DNA sequences could then potentially produce new virus particles that can replicate, start a new round of infection and are, of course, resistant to the original CRISPR/Cas9 targeting, since they now contain new mutations. Once again science proves to be more fickle than originally thought; it really shouldn’t surprise us anymore.

wang-2016

Schematic showing how HIV can escape CRISPR/Cas9 editing – copied directly from Wang et al, 2016, Cell Reports

To return to and end on a more culinary note: not only has the world now seen CRISPR cabbage, but a report (Ren et al, 2016) published a couple of weeks ago demonstrated that the gene-editing technology also works in grapes, Chardonnay to be precise. The scientists modified the gene coding for the L-idonate dehydrogenase protein, which is involved in producing tartaric acid. So it is in theory possible to generate sweeter, or at least less acidic, grapes:

screen-shot-2016-09-18-at-16-17-57

Genome-edited Chardonnay plant – copied directly from Ren et al, 2016

References:

Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports 6: 22555

Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6: 32289

Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg Mark A, Liang C (2016) CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports 15: 481-9

Wang G, Zhao N, Berkhout B, Das AT (2016) CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Mol Ther 24: 522-526