CRISPR Digest #14

Two years ago, in spring 2015, Liang et al. published the first report of gene-editing in human embryos using CRISPR/Cas9 (mentioned previously here, here and here). At the time no high-profile journal was willing to take on the risk of publishing what was perceived to be a controversial study. Liang et al. were trying to correct mutations in the human beta-globin gene – mutations in this gene can lead to a group of diseases called beta thalassaemias, including sickle cell anaemia – in human embryos that had been fertilised by two sperm cells (and could therefore never develop). In fact, the take-home message from their study was that using the techniques available to them at the time led to a host of unwanted side effects, including the creation of mutations at other sites in the embryo genome and the “correction” of the beta-globin gene with a similar gene called delta-globin.

Last month, a different group (Ma et al. – four first authors and five corresponding authors!) published more work on human embryo CRISPR/Cas9 gene-editing, this time in Nature. Like Liang et al. this paper also tried to tackle a monogenic disease, a disease that is caused by a well-defined mutation in a single gene, called hypertrophic cardiomyopathy. The affected gene is MYBPC3 and when mutated (denoted as DeltaGAGT in the figure below) this leads to a thickening of the heart muscle, which in turn can cause heart failure. The authors used donor sperm with the MYBPC3 mutation together with healthy oocytes to perform their experiments. In the first approach the eggs were fertilised by the sperm and only subsequently, during S phase, were the guide RNA, Cas9 protein and a piece of non-mutated donor DNA injected. The guide RNA was designed to specifically recognise the mutant version of MYBPC3, which recruits the Cas9 protein to make a cut in the DNA, and then the donor DNA would serve as a template to repair the sperm’s mutated gene. Ma et al. observed that this technique worked but often generated so-called mosaic embryos, which contained a mixture of healthy and mutated cells. This incomplete gene correction happened because during S phase both the maternal and paternal chromosomes duplicate and therefore the CRISPR/Cas9 system would have to correct two mutated MYBPC3 genes before the first cell division.

Screen Shot 2017-09-10 at 16.16.44
Schematic depicting CRISPR/Cas9 stage at zygote stage (top) versus together with sperm (bottom) – copied directly from Ma et al, 2017

In a second approach, Ma et al. wanted to overcome this mosaicism by injecting the CRISPR components together with the sperm during the M phase of the oocyte. Now only one copy of mutant MYBPC3 had to be corrected and this succeeded in producing completely healthy embryos. Ma et al. also checked to make sure that these embryos did not carry any unwanted, off-target mutations.

Last but not least, Ma et al. provided evidence that often the human zygote used the healthy maternal gene to provide a template for the repair of the mutated paternal gene, instead of the injected DNA template. This is significant because in most cell types the DNA double-strand breaks caused by Cas9 are usually repaired in an imprecise manner (called non-homologous end joining) and lead to further mutations. Ma et al. therefore argued that “human gametes and embryos employ a different DNA damage response system”.

This finding could be of huge importance, both to the basic understanding of human embryonic development as well as to potential therapeutic CRISPR/Cas9 applications. However, four days after the Nature paper was published online, several prominent scientists posted a riposte on the pre-print server bioRxiv. Egli et al. criticised the first paper quite heavily by raising theoretical objections/concerns; they couldn’t have tried to replicate the experiments in such a short time frame. [Note that this pre-print was, of course, not peer-reviewed, although the authors have confirmed that they were trying to get their work published in Nature as well.]

Among other more technical issues to do with the way in which healthy and mutant genes were detected, Egli et al. pointed out that after fertilisation the maternal and paternal chromosomes remain physically separated (indicated by the arrows in the figure below) until just before the first cell division. Therefore, Egli et al. argued, it is highly unlikely that the healthy maternal MYBPC3 gene could serve as a template for the repair of the mutant paternal gene. This strikes me as a strong argument, not being at all familiar with early human development. Overall, Egli et al. suggested that Ma et al. were simply not detecting the mutant gene in their embryos but not providing good enough evidence of a corrected gene. The scientific debate will, no doubt, continue and I think having bioRxiv as such a rapid place for the exchange of ideas can drive scientific discourse.

Egli et al - early development
Pictures of a human zygote (fertilised egg/oocyte) and its very early development – copied directly from Egli et al, 2017

Since this is a digest it should also contain some other relevant CRISPR/Cas9-related news. One of the post docs I met at Cold Spring Harbor Laboratory in 2014, Serif Senturk, published a paper early this year in which the authors show how they can switch CRISPR on or off in living cells. They did this by fusing the Cas9 protein to another, destabilising protein domain, which caused the attached Cas9 to get degraded. However, when a “shield molecule” was added to the cells, the destabilising domain was no longer active and the Cas9 could accumulate. This innovation counteracts the problem of off-target effects, which are often due to the long duration that Cas9 is active for. Pretty neat system, I think.

Senturk 2017

Schematic depicting Cas9 fused to a destabilising domain – copied directly from Senturk et al, 2017


References:

Egli D, Zuccaro M, Kosicki M, Church G, Bradley A, Jasin M (2017) Inter-homologue repair in fertilized human eggs?
bioRxiv: http://www.biorxiv.org/content/early/2017/08/28/181255

Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell: 1-10

Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X et al. (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548: 413-419

Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R (2017) Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nature Communications 8: 14370

Advertisements

11th International PhD Student Cancer Conference

A glorious three day bonanza of beer, brains and BRAF. — Tom Mortimer, PhD student at The Francis Crick Institute

IMG_1590

On Wednesday morning, June 14th, twenty PhD students from The Francis Crick Institute woke up early and made their way from one of London’s five airports to Berlin. Specifically to Campus Berlin-Buch – the geographic equivalent of Clare Hall Laboratories, situated right next to the M25, the London Orbital Motorway, 25 kilometres from the city centre – home to the Max Delbrück Center for Molecular Medicine (MDC).

IMG_1558

On the campus of the MDC

We were attending the 11th international PhD student cancer conference (IPSCC), which was initiated at the London Research Institute (LRI), one of the founding partners of The Crick. In fact, the opening remarks were held by Holger Gerhardt, a former group leader at the LRI. He immediately gave the meeting a political flavour by stressing how important diversity is within research, openly showing his disdain for Brexit.

The conference was organised by PhD students at the MDC for other students studying cancer across Europe, with delegates from the UK, Germany, Italy and the Netherlands. The talks were spread over three days and the topics ranged from in silico computational biology and large-scale genomics approaches to cell signalling and in vivo cancer metabolism. Strikingly, when speakers were given suggestions or asked questions they seemed sincere in their responses, especially when they didn’t know the answers. One of the talks most out of the ordinary was given by Joseph Hodgson from the CRUK Beatson Institute in Glasgow: he uses fruit flies to study the process of weight loss and muscle wasting due to cancer (also known as cachexia).

IMG_1555

Joseph Hodgson showing fluorescent images of fruit fly muscle wasting (right)

The prize for the best talk went to Rajbir Nath Batra, from the CRUK Cambridge Institute, who studies DNA methylation dynamics in breast cancer in Carlos Caldas’ group. The best poster by far was created by Cora Olpe, also at the Cambridge Institute, who is trying to understand the chemopreventive effect of aspirin on colorectal cancer in the group of Douglas Winton.

IMG_1557

Cora Olpe’s poster made use of Aspirin’s chemical formula to great effect

On the social side of things, conversation was enabled by providing generous amounts of delicious German beer as well as having us participate in career workshops, including on grant writing, conducting clinical trials, science communication and on becoming an entrepreneur. All in all it was great to get the opportunity of meeting the people who might be our future collaborators.

The keynote speakers were Mónica Bettencourt-Dias (Gulbenkian Institute, Lisbon) and Madalena Tarsounas (Institute for Radiation Oncology, Oxford). Lastly, Klaus Rajewsky (MDC, Berlin), a world-renowned immunologist, gave a lecture on his “life in science”. He ended the conference also on a political note, juxtaposing the 1975 referendum on the UK’s membership to the European common market with the Brexit referendum, also stressing how important international collaboration and diversity are within science.

Next year the 12th IPSCC will be hosted by The Francis Crick Institute. We hope to have a great turnout (especially in the face of Brexit) – see you there!

 

March for Science

London, Saturday April 22nd 2017

The weather is changeable as I leave the flat in the late morning. Sunny spells – dazzling my eyes clad in contact lenses – are abruptly overtaken by the English drizzle that leaves me damp and puzzled because the sun has already regained its prominence. I’m on the Westbound Piccadilly line wearing a Cancer Research UK t-shirt that reads, “I’m a researcher fighting cancer”, and I can’t tell whether I’m getting more looks than is usual on the Tube. I alight at South Kensington to meet a friend of mine, the bubbleologist Li Shen. (And yes, that is now a technical term. Li, who has a degree in mathematics, is a PhD student studying the physics of bubbles, which has far-reaching implications: from the amount of bubbles generated by different types of beer to the undesired foaming of lubricants used in oil extraction.) But we’re not just here to catch up, although it is conveniently close to his lab/office at Imperial College. No, we’re here to join the March for Science. [All of the following images were taken either by Li or by me.]

science march banner.jpg

According to the BBC, “thousands of people” joined the march, the first of its kind taking place on the annual Earth Day and organised around the world. I think the event probably got part of its boost from the Women’s Marches that took place on January 21st, the day after Donald Trump’s inauguration. Certainly, the protesters on both occasions had much in common.

destroy the patriarchy, not the planet

One of the most notable differences between the two events, however, was that this second protest was certainly smaller and also much quieter. I suppose it’s true that scientists – and yes, the marchers were mainly scientists and their relatives, partners and close friends – are a little bit shy and socially awkward. Amongst the stewards, one was trying to get the following chant off the ground, with little success, “Scientists are good at generating questions, not so good at slogans”…

french embassy

Here’s a blurry Li in the foreground, with a sharp French embassy in the background. Walking by I couldn’t help but send what’s known as a “Stoßgebet” in German to the high heavens; roughly translates as a quick (secular) prayer. For now we can breathe a brief sigh of relief after the first round of the presidential elections. Hopefully Europe, science and European Research Council funding will be able to continue to prosper.

knowledge trumps ignorance

Speaking of Trump, the March for Science event emanated from Washington DC, where it started as a protest against fake news, alternative facts and a world in which experts are regarded as worthy of derision. Honestly, as with the Women’s March, I don’t know and can’t tell how much impact marches like these actually have in politics, but as a start there was significant media coverage. Even Buzzfeed compiled its list of top banners and slogans (some scientists do have a sense of humour). My personal favourite was this one, of course.

big brains

I do know that within three months I went to two marches, the first two of my life. Ideally, I won’t have to go to any more and will be able to spend my Saturdays in the lab, where a diligent PhD student should be (and where I know some of my colleagues were). Lastly, let’s give reason, described by Wikipedia as being “the capacity for consciously making sense of things, applying logic, establishing and verifying facts, and changing or justifying practices, institutions, and beliefs based on new or existing information”, a big thumbs up.

reason

Behrens lab retreat 2016

Imagine spending a weekend in these idyllic surroundings in the Peak District with nothing to do but talk about and discuss science.

image1-1

The Peak Mermaid Inn – taken at sunrise on November 13th 2016

Well, that’s exactly what we, the Behrens lab, did last weekend. We invited a keynote speaker, Roland Rad, and Dieter Saur’s group from the Technical University of Munich to join us. Each of us gave a talk about the most interesting or exciting aspects of our projects and in between we drank copious amounts of coffee. In the evenings we cooked enough food to feed a small regiment, drank beer, played pool, darts or table football, all punctuated by heated debates about science. Although this wasn’t a relaxing weekend by normal standards, it was motivating and inspiring and a good reminder of why I enjoy being a scientist: a combination of rational and logical thinking, curiosity and the drive to learn new things for their own sake, all shared with people who, by and large, know more than I do and think differently.

Of the talks I just want to highlight one in particular, because my project also uses one of the techniques mentioned. Dieter Saur is a medical doctor and has his own lab group, which studies mainly gastrointestinal diseases, including pancreatic cancer. In a recently published paper (Schönhuber et al, 2014) they describe an experimental system in mice called the “dual recombinase system“. This is a genetic system that allows the study of complex diseases such as cancer. Until recently it was only possible to simultaneously switch on a gene that drives tumour progression and switch off a gene that prevents tumour formation in a cell type or organ of interest (e.g. in the pancreas). Using the dual recombinase system it is possible to make genetic alterations sequentially. For example, in the beginning of a mouse’s development one can activate a potent tumour driver called Ras and delete an important tumour suppressor called p53. And then, once a tumour has formed, one can additionally delete genes that may be important to maintain the established tumour. Alternatively, the dual system also makes it possible to make genetic changes to the normal cells surrounding the (pancreatic) tumour. If all goes well then I will be able to use these tools to conduct experiments like this in the next year or so.

15044797_10154563370871405_2126581266_o zip-line

Oh and admittedly we did have an activity scheduled that was slightly less scientific: we got all geared up and went on a GoApe outing. Secured by a harness and after some rigorous safety instructions we got to fly down zip lines, balance over gaping abysses and jump over the void below.


Lastly, the following week saw Queen Mary University London and Barts host the 11th UK cancer stem cell symposium. There were several interesting talks, including by group leaders at the Crick Institute, but the most unusual talk was given by a philosopher called Lucie Laplane. She did her PhD in philosophy and combined this with a research master’s in stem cell biology. Putting the two fields together she came up with a classification of (cancer) stem cells using definitions and guidelines borrowed from philosophy, applied to biology. [In general, researchers agree that stem cells are cells that can self-renew (i.e. generate new copies of themselves) and can produce differentiated/specialised daughter cells.] The most important point was how to pin down what kind of characteristic “stemness” is or what makes a stem cell a stem cell:

csc-table

Framework for defining (cancer) stem cells – copied from Lucie Laplane’s talk at the symposium

For instance, in some cases a stem cell might always be a stem cell no matter what the environment is like (i.e. categorical); other stem cells may be dispositional in nature, meaning that they always have the potential to act as a stem cell but only do so in a permissive environment. Alternatively, being a stem cell might not be property of a single cell at all but rather an attribute of an entire organ (i.e. systemic). Laplane argued that the way we define (cancer) stem cells has a huge impact on how we try to treat diseases such as cancer. For example, if cancer stem cells are “systemic” then even the best therapies targeted against these cells will fail because the system/the tumour will make new cancer stem cells from other tumour cells. Hans Clevers, one of the Gods in the stem cell field, wrote a glowing review of the book here.

References:

Laplane, Lucie. Cancer Stem Cells: Philosophy and Therapies. Harvard University Press, 2016.

Schonhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, Eser S, Feyerabend TB, Paul MC, Eser P, Klein S, Lowy AM, Banerjee R, Yang F, Lee C-L, Moding EJ, Kirsch DG, Scheideler A, Alessi DR, Varela I, Bradley A, Kind A, Schnieke AE, Rodewald H-R, Rad R, Schmid RM, Schneider G, Saur D (2014) A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20: 1340-1347

Max Perutz Science Writing Award 2016

I remember, a couple of years ago, seeing an advert by the Medical Research Council (MRC) for a science writing competition and subsequently being bitterly disappointed when I found out it was only for PhD students. Luckily, it’s an annual competition and even more fortunately, The Francis Crick Institute is partly funded by the MRC so that I was eligible to enter.

Now – spoiler alert – before this post ends with an absolute anti-climax, I’ll tell you straight away that I didn’t win. However, I enjoyed answering the question why my research matters in the 800-word essayNot all cancer cells are equal“. The judges used three main criteria to evaluate the essays: 1) Does the essay convincingly explain why the research matters? 2) Is it easy to understand for a public audience? 3) Is the essay well written?

Although I didn’t win, I was shortlisted together with thirteen other entrants and got to attend a science writing masterclass led by Jon Copley, the co-founder of SciConnect, a company that provides science communication training to scientists. The News and Features producer at the MRC was live-tweeting from this course – how cool is that?

The class was really helpful. For instance, I learnt that when writing short to medium length articles (up to 1000 words maximum) the most common structure is the “inverted triangle”. The most important information goes first, i.e. my research matters because it may lead to the development of new anti-cancer drugs. This is different from a research article because there the discussion and conclusion are arguably the most important and come last. I think most essays, including mine, had introductions that were too long. Another handy tip was to think about when/at what age I last shared a class with my target audience. For these essays we could probably assume that interested readers would have had a science education until GCSE level – so we were supposed to write in a way that a fifteen year old might understand.

inverted-triangle

Inverted triangle essay structure for short to medium length articles – copied directly from Wikipedia

When I looked around the room during the writing class – and you might notice it in the photo – I realised that everyone else was probably British and definitely white. At first I was a little bit confused by this since, surely, there is no correlation between skin colour and English writing skills; of last year’s six Man Booker Prize nominees only two were white. But it all made sense when I looked up the MRC’s PhD student funding policy: students need to be eligible to reside in the UK without restrictions and therefore this skews the demographic. [Why higher education in the UK is not more widely accessed is a whole different kettle of fish.]

all-shortlisters

The fourteen shortlisters together with two of the judges, Chris van Tulleken and Donald Brydon, and Robin Perutz, the son of Max Perutz – image copied directly from the MRC website

To round off the day we were all invited to the ceremony at the Royal Institution that evening. In addition to the actual prize-giving, both Donald Drydon, chairman of the MRC, and Robin Perutz, Max Perutz’s son, gave good speeches. The former emphasised that science communication with the public is more important than ever for securing support and funding, since Brexit probably means there will be less money from the government.

Your ability to explain your science allows us, as a country, to carry on being curious. – Donald Brydon

Robin Perutz told a story, also very topical, about how his father and mother met due to an organisation called the Society for the Protection of Science and Learning (SPSL, founded in 1933), which had the mandate of supporting refugee scientists in the UK. Among others, the SPSL helped sixteen future Nobel Prize winners, among which were Max Perutz, Max Born and Hans Krebs. Other prominent academics included Nikolaus Pevsner and Karl Popper. Robin Perutz, currently a professor of inorganic chemistry at the University of York, explained that his lab is taking/has taken in a scientist from Syria who is being funded by the Council for At-Risk Academics (Cara). And it turns out that Cara is none other than SPSL under a new name.

Lastly, we received a copy of The Oxford Book of Modern Science Writing. Who can say no to a book. Overall, from the actual essay writing to the writing class and the ceremony this was an enjoyable experience, which I would highly recommend. Thanks to all the judges and the MRC staff who organised the award. Congratulations to the winners and other almost winners!

modern-science-writing


Now that I think about it, I’ve actually already written a few things relating to Max Perutz, including about his biography, his optimism in research and a symposium in honour of his 100th birthday. It seems I’m quite the fan.